ДИОДЫ Д123-500, Д233-1600, Д143-2000

Общие сведения

Диоды Д123-500, Д233-1600, Д143-2000 таблеточного исполнения предназначены для применения в цепях постоянного и переменного тока частотой до 500 Гц различных силовых установок.

Условия эксплуатации

Климатическое исполнение и категория размещения УХЛ2 и Т3 для эксплуатации в атмосфере типа I и II по ГОСТ 15150-69.

Диоды предназначены для эксплуатации во взрывобезопасных и химически неактивных средах, в условиях исключающих воздействие различных излучений (нейтронного, электронного, гамма-излучения).

По прочности и устойчивости к воздействию механических нагрузок диоды соответствуют группе М27 условий эксплуатации по ГОСТ 17516.1-90.

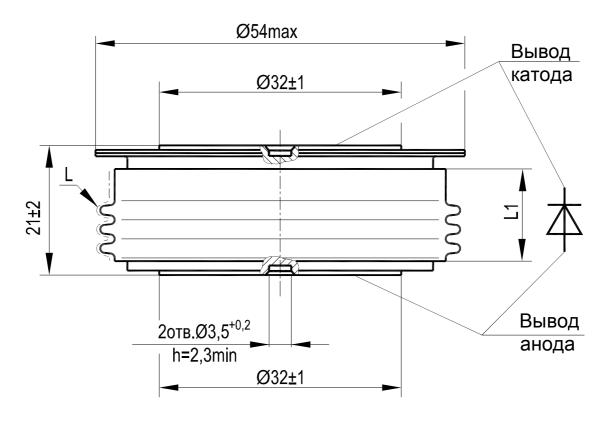
Диоды допускают воздействие вибрационных нагрузок в диапазоне частот от 10 до 100 Γ ц с ускорением 50 м/с 2 и одиночных ударов длительностью импульса 50 мс и ускорением 40 м/с 2 .

Рекомендуемый охладитель для Д123-500, Д233-1600 - OP143-150, для Д143-2000 - OP243-150 по ТУ У 32.1-30077685-015-2004. Допускается применение других охладителей с площадью поверхности не менее 3657 cm^2 .

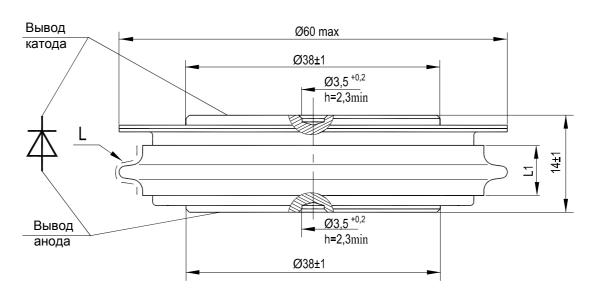
Диоды по своим параметрам и характеристикам соответствуют ТУ У 32.1-30077685-014-2004.

Комплектность поставки и формулирование заказа

Диоды поставляются без охладителей, но по согласованию с предприятием-изготовителем могут поставляться с охладителем и комплектом крепежных деталей. К каждой пачке диодов, транспортируемых в один адрес, прилагается этикетка.


При заказе диодов необходимо указать: тип, класс, значение импульсного прямого напряжения в вольтах (для параллельного включения диодов), климатическое исполнение и категорию размещения, количество, комплектность поставки, номер технических условий. В случае заказа диодов для параллельной работы необходимо указывать количество диодов в одном плече выпрямителя. Пример заказа 50 штук диодов типа Д143-2000 восьмого класса, климатического исполнения УХЛ, категории размещения 2: Д143-2000-8 УХЛ2 ТУ У 32.1-30077685-014-2004 50 шт., без охладителей.

Габаритно-присоединительные размеры и масса диодов



Остальные размеры, масса и усилия сжатия на листе 2

1

Д143-2000

Тип диода	Размеры,	Масса, г,	Усилие	
тип диода	L	L1	не более	сжатия, кН
Д123-500	13	8,5	70	5±0,5
Д233-1600	26	14,3	188	10±1
Д143-2000	13,5	7,5	165	15±1

L - длина пути для тока утечки между анодом и катодом диода L1 - расстояние по воздуху между анодом и катодом диода

Обратные параметры

Параметр Значение параметра			Volonya vezeven zevya		
Буквенное обозначение	Наименование, единица измерения	Д123-500	Д233-1600	Д143-2000	Условия установления норм на параметры
U _{RSM}	Неповторяющееся импульсное обратное напряжение, В, для классов: 4 5 6 8 9 10 11 12 14 16 Повторяющееся импульсное обратное напряжение, В, для классов: 4 5 6 8 9 10 11 12 14 15	450 560 670 900 1000 1100 1200 1300 1500 1700 400 500 600 800 900 1000 1100 1200 1400	50 6′ 90 - - - - - - - - - - - - - - - - - -	50 50 70 90 - - - - - - - - - - -	T_{jm} =190°C. Импульс напряжения синусоидальный одиночный длительностью не более 10 мс. T_{jm} =190°C. Импульсы напряжения синусоидальные однополупериодные длительностью не более 10 мс частотой 50 Γ ц.
U _{RWM}	16 Рабочее импульсное обратное напряжение, В	0,8U _{RRM} -			
$\rm U_R$	Постоянное обратное напряжение, В	$0.6 { m U}_{ m RRM}$			T _c =110°C
Повторяющийся импульсный обратный ток, мА, не более		25	3,0 40 50		T _j =25°C T _{im} =190°C

Параметр термодинамической стойкости

	Параметр	Значение параметра	Условия установления
Буквенное обозначение	· ·		норм на параметр
I _{c(crit)}	I _{c(crit)} Ток термодинамической стойкости корпуса, кА		t _i =5,8 мс

Прямые параметры

]	Параметр		Значение	V		
Буквенное обозначение	Наименование, единица измерения	Д123-500	Д233-1600	Д143-2000	Условия установления норм на параметры	
$\mathbf{I}_{\mathrm{F(AV)M}}$	Максимально допустимый средний прямой ток, А	500	1600	2000	T _c =110°C Импульсы тока синусоидальные однополупериодные длительностью не более 10 мс частотой 50 Гц.	
	Фактический максимально допустимый средний прямой ток, А	646	1640	2260		
$\mathbf{I}_{ ext{FRMSM}}$	Максимально допустимый действующий прямой ток, А	785	2512	3140		
		8,3	17,6	27,5	T _j =25°C	
I _{FSM}	Ударный прямой ток, кА	7,5	16,0	25	T _{jm} =190°C. Импульс тока синусоидальный однополупериодный одиночный длительностью не более 10 мс.	
${f U}_{{f FM}}$	Импульсное прямое напряжение, В, не более	1,55	1,5	1,4	$T_j = 25$ °C, $I_F = 3,14I_{F(AV)M}$	
\mathbf{U}_{TO} на	Пороговое напряжение, В, не более	0,83	0,91	0,97	T _j =25°C	
		0,71	0,83	0,81	T _{jm} =190°C	
r _T	Динамическое сопротивление в прямом направлении, мОм, не более	0,46	0,12	0,07	T _j =25°C	
		0,59	0,13	0,09	T _{jm} =190°C	
	Средний прямой ток при T_a =40°C, А	охладитель	OP143-150	охладитель ОР243-150	охлаждение:	
		240	295	510	естественное	
		480	785	1190	принудительное v=6 м/с	

Тепловые параметры

]	Параметр		Значение	Условия		
Буквенное обозначение	Наименование, единица измерения	Д123-500	Д233-1600	Д143-2000	установления норм на параметры	
T _{jm}	Максимально допустимая температура перехода, °С		19			
T _{jmin}	Минимально допустимая температура перехода, °C		мину			
T _{stgm}	Максимально допустимая температура хранения, °С		5			
T _{stgmin}	Минимально допустимая температура хранения, °С		мину			
R _{thjc}	Тепловое сопротивление переход-корпус, °C/Вт, не более	0.075	0.036	0.027	Постоянный ток	
R _{thch}	Тепловое сопротивление корпус-охладитель, °C/Вт, не более	0.02	0.015	0.01		
	Тепловое сопротивление переход-среда, °C/Вт, не более	охладитель ОР143-150 охладитель ОР243-150			охлаждение:	
R _{thja}		0,595	0,551	0,317	естественное	
		0,22	0,176	0,117	принудительное v=6 м/с	

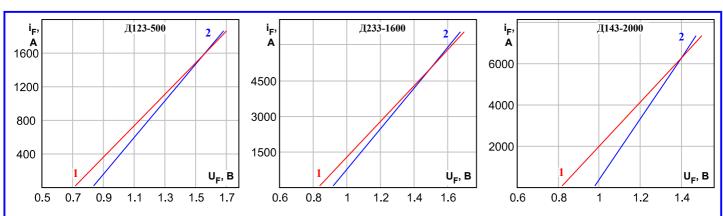


Рисунок 1: Предельные вольтамперные характеристики при максимально допустимой температуре перехода T_{jm} (1) и температуре T_{j} =25°C (2), $I_{\scriptscriptstyle F}$ =3,14 $I_{\scriptscriptstyle F(AV)}$.

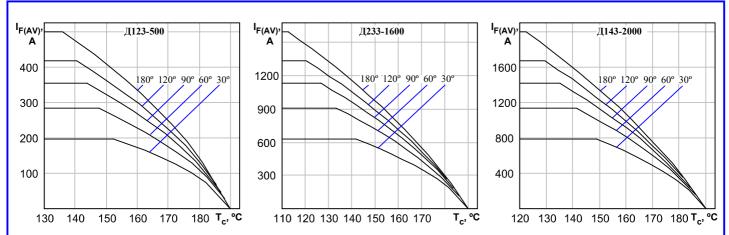


Рисунок 2: Зависимость допустимого среднего прямого тока $I_{_{F(AV)}}$ синусоидальной формы частотой 50 Γ ц при различных углах проводимости от температуры корпуса T_c .

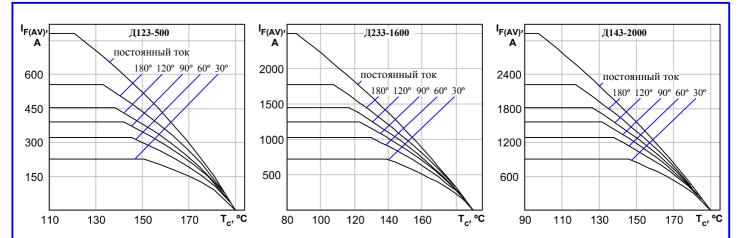


Рисунок 3: Зависимость допустимого среднего прямого тока $I_{_{F(AV)}}$ прямоугольной формы частотой 50 Γ ц при различных углах проводимости и постоянного тока от температуры корпуса T_c .

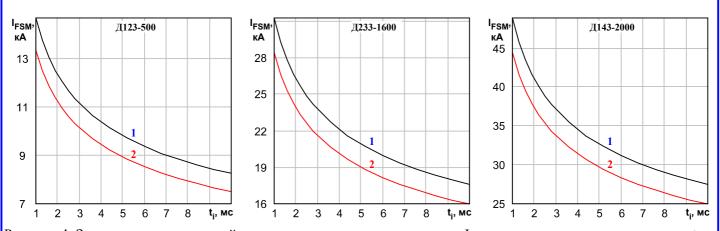


Рисунок 4: Зависимость допустимой амплитуды ударного прямого тока $I_{\rm FSM}$ от длительности импульса тока $t_{\rm i}$ при исходной температуре структуры $T_{\rm j}$ =25°C (1) и максимально допустимой температуре перехода $T_{\rm im}$ (2).

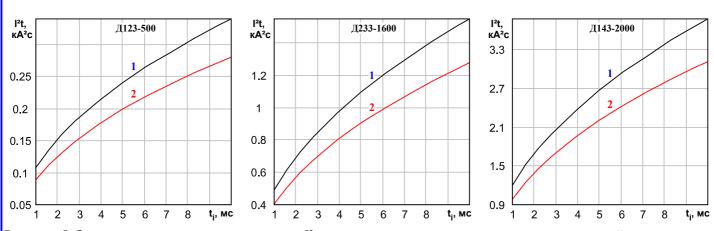


Рисунок 5: Зависимость защитного показателя I^2t от длительности импульса тока t_i при исходной температуре структуры T_i =25°C (1) и максимально допустимой температуре перехода T_{im} (2).

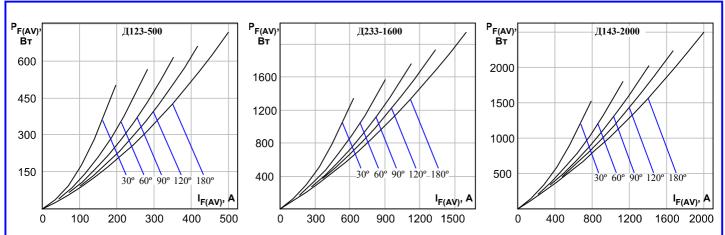


Рисунок 6: Зависимость средней прямой рассеиваемой мощности $P_{_{F(AV)}}$ от среднего прямого тока $I_{_{F(AV)}}$ синусоидальной формы частотой 50 Γ ц при различных углах проводимости.

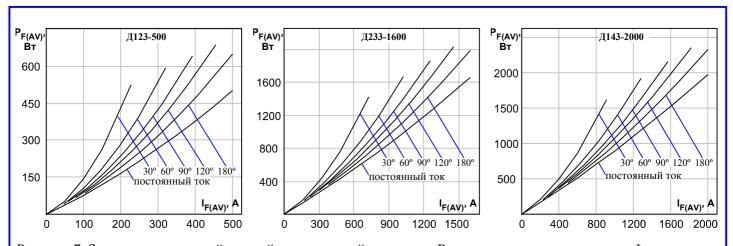


Рисунок 7: Зависимость средней прямой рассеиваемой мощности $P_{_{F(AV)}}$ от среднего прямого тока $I_{_{F(AV)}}$ прямоугольной формы частотой 50 Γ ц при различных углах проводимости и постоянного тока.

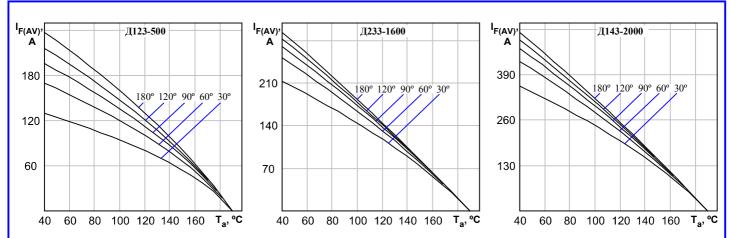


Рисунок 8: Зависимость допустимого среднего прямого тока $I_{_{F(AV)}}$ синусоидальной формы частотой 50 Γ ц при различных углах проводимости от температуры окружающей среды T_a при естественном охлаждении Д123, Д233 на OP143-150, Д143 - на OP243-150.

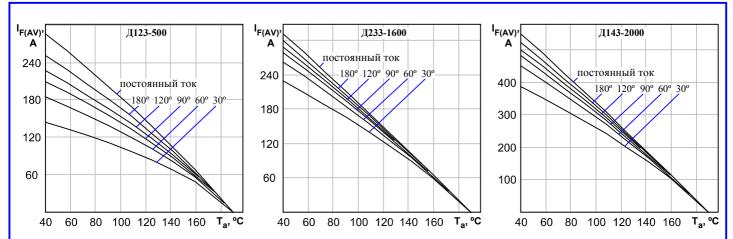


Рисунок 9: Зависимость допустимого среднего прямого тока $I_{_{F(AV)}}$ прямоугольной формы частотой 50 Γ ц при различных углах проводимости и постоянного тока от температуры окружающей среды T_a при естественном охлаждении Д123, Д233 на OP143-150, Д143 - на OP243-150.