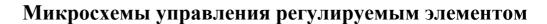

Микросхемы управления регулируемым элементом

142ЕП2Т



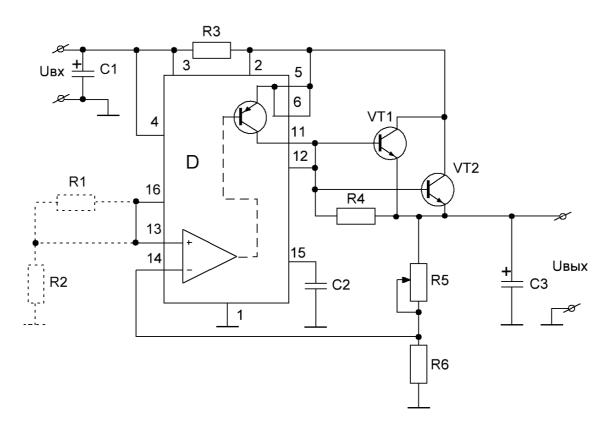
- Напряжение питания 2,5 ... 25 В
- Диапазон рабочих температур минус 60°С ... +125°С
- Металлокерамический корпус 4112.16-15.01
- Наработка до отказа не менее 100 000 часов
- Категория качества «ВП»
- Технические условия АЕНВ.431420.087 ТУ
- Код маркировки 96

Предназначены для применения в аппаратуре специального назначения наземного и морского базирования, авиационной, ракетной и космической техники.

Интегральные микросхемы 142ЕП2Т управления мощным регулирующим элементом предназначены для использования в экономичных мощных непрерывных стабилизаторах напряжения, а также длянепосредственного (автономного) применения в качестве высокоточного широкодиапазонного стабилизатора с низким падением напряжения междувходоми выходом. Допускается использование микросхемы в качестве низкочастотного компаратора с большим выходным током, имеющего задержку срабатывания и отпускания 20-30 мкс и напряжение смещения нуля ±(1-3) мВ.

Основные характеристики	
Параметр	Значение
Входное напряжение, В	2,5 25
Опорное напряжение, В	1,25
Минимальное падение напряжения, В	0,5
Ток потребления, мА	3
Масса, г, не более	1,4
Габаритные размеры, мм	9,5x17x3,46

142ЕП2Т


Электрические параметры		
Напряжение считывания обратной связи, В	1,271,32	
Нестабильность напряжения считывания обратной связи	0.03	
по входному напряжению, %/А, не более	0,03	
Нестабильность напряжения считывания обратной связи	3,0	
по выходному току, %/А, не более	3,0	
Температурный коэффициент напряжения считывания	0,015	
обратной связи, %/°С, не более		
$(U_{BX}=2.5 \text{ B}; U_{BMX}=2.0 \text{ B}; I_{BMX}=3\text{MA})$		

Предельно-допустимые режимы эксплуатации	
Входное напряжение, В	2,525
Выходное напряжение, В	1,424
При использовании делителя опорного напряжения	0,724
Выходной ток, мА	3,0200
Рассеиваемая мощность (без теплоотвода), Вт, не более	
При температуре от минус 60°C до +65°C	0,75
125°C	0,25
Тепловое сопротивление кристалл-окружающая среда,	110
не более, °С/Вт	

Стойкость к внешним воздействующим факторам	
Пониженная температура среды	минус 60 °С
Повышенная температура корпуса	+125°C
Атмосферное пониженное давление (при	1,2x10 ⁴ (90) Па
авиатранспортировании)	(мм.рт.ст)
Допустимое значение статического потенциала, не менее	1000 B
Собственная резонансная частота, не менее	28 000 Гц
Стойкость к воздействию специальных факторов	7.И, 7.С, 7.К по
Стоикость к воздействию специальных факторов	ГОСТ РВ 20.39.414.2
Наработка до отказа, не менее	100 000 ч
Гамма-процентная наработка T_{γ} при γ =97,5%	200 000ч

Схема включения микросхемы для управления мощным регулирующим n-p-n транзистором в стабилизаторе напряжения с выходным током до 10 A

D – микросхема;

С1, С2, С3 – конденсаторы;

R1, R2, R3, R4, R5, R6- резисторы;

VT1, VT2 – транзисторы.

Требования к элементам схемы

 $C1 \ge 4,7$ мк Φ – конденсатор фильтра входного напряжения.

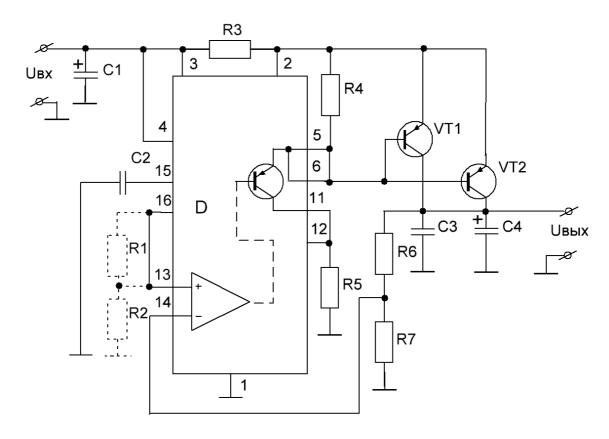
 $C2 = (0.01-0.1) \ \text{мк}\Phi - \text{конденсатор коррекции амплитудно-частотной характеристики,}$ устанавливаемый при необходимости повышения устойчивости.

 $C3 \ge 22$ мк Φ – конденсатор фильтра выходного напряжения.

 $R1+R2 \ge 30 \ {\rm кOm} \ -$ резисторы делителя опорного напряжения, устанавливаемые вместо перемычки при необходимости стабилизации напряжений менее $U_{\rm oc}$, B.

$$R3 = \frac{(150 - 210) \text{ MB}}{I_{\text{orp}} \text{ MA}} \text{ Ом } - \text{резистор задания порога ограничения выходного тока.}$$

 $R4 < 150 \ {
m Om} - {
m pe}$ зистор, обеспечивающий токоотвод минимального выходного тока микросхемы.


$$R5 = R6 \cdot \left(\frac{U_{\text{вых}}}{1,3 \, B} - 1 \right) \, -$$
 резистор задания выходного напряжения.

R6 ≤ 1,3 кОм – резистор задания тока делителя напряжения считывания обратной связи.

VT1, VT2 – транзисторы мощного регулирующего элемента типа 2T803A ГЕЗ.365.008 ТУ или аналогичные.

Схема включения микросхемы для управления мощным регулирующим p-n-p транзистором в стабилизаторе напряжения (0,9 – 12) В и выходным током до 10 А

D – микросхема;

С1, С2, С3, С4 – конденсаторы;

R1, R2, R3, R4, R5, R6, R7 – резисторы;

VT1, VT2 – транзисторы.

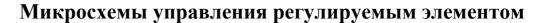
Требования к элементам схемы

 $C1 \ge 10$ мк Φ – конденсатор фильтра входного напряжения.

 $C2 \ge 1000$ пФ – конденсатор коррекции амплитудно-частотной характеристики. Конденсатор C2 устанавливается при необходимости повышения устойчивости.

C3 = 0.1 мк Φ – конденсатор фильтра шумов.

 $C4 \ge 220 \ \text{мк} \Phi$ – конденсатор фильтра выходного напряжения.


 $R1+R2 \ge 30 \ kOm$ — резисторы делителя опорного напряжения, устанавливаемые вместо перемычки при необходимости стабилизации напряжений менее 1,4 В.

$$R3 = \frac{(150 - 210) \, MB}{I_{\text{огр}} \, MA} \, OM \, -$$
 резистор задания порога ограничения выходного тока.

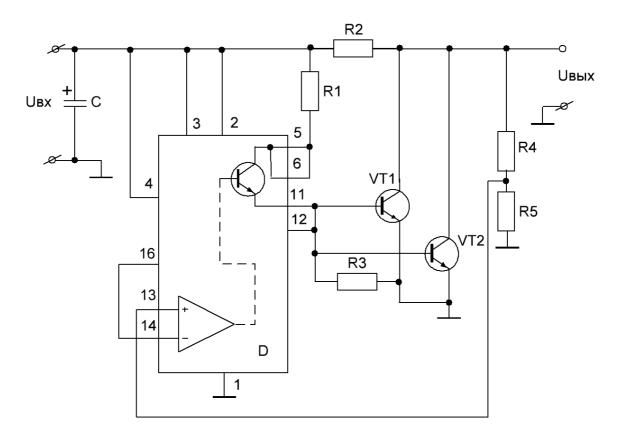
$$R4 = \frac{(U_{\text{вx}} - 1B) (B_{\text{ст}})}{I_{\text{вых}} A} = (0 - 200) \ OM \ - \ \text{резистор ограничения мощности, выделяющейся в}$$

микросхеме.

где $B_{cr}-$ статический коэффициент усиления p-n-p транзисторов.

142ЕП2Т

 $R5 \le 150~{
m Om}$ — резистор, обеспечивающий токоотвод минимального выходного тока микросхемы.


$$R6 = R7 \cdot \left(\frac{U_{\text{вых}}}{1,3 \text{ B}} - 1 \right) -$$
 резистор задания выходного напряжения.

R7 ≤ 1,3 кОм – резистор задания тока делителя.

VT1, VT2 – транзисторы мощного регулирующего элемента типа aA0.339.411 ТУ или аналогичные.

2T837A

Схема включения микросхемы для управления регулирующим элементом мощного параллельного стабилизатора напряжения

D – микросхема;

С – конденсатор;

R1, R2, R3, R4, R5 – резисторы;

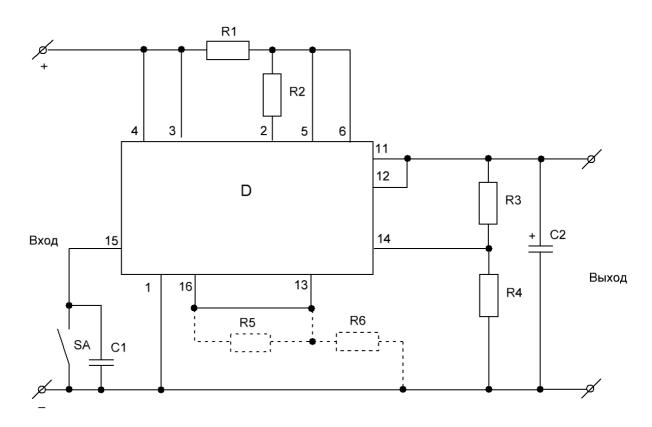
VT1, VT2 – транзисторы.

 $C \ge 10$ мк Φ – конденсатор фильтра входного напряжения.

R1 = (0 - 200) Ом – резистор ограничения выходной мощности микросхемы.

R2 > 1 Ом – балластное сопротивление.

R3 < 150 Ом – резистор обеспечивающий токоотвод минимального выходного тока микросхемы.


$$R4 = R5 \cdot \left(\frac{U_{\text{вых}}}{1,3 \, B} - 1 \right) -$$
 резистор задания выходного напряжения.

R5 ≤ 1,3 кОм – резистор задания тока делителя напряжения считывания обратной связи.

VT1, VT2 – транзисторы мощного регулирующего элемента типа 2Т819Б аA0.339.142 ТУ или аналогичные.

Схема включения микросхемы в маломощном стабилизаторе с малым падением напряжения

$$U_{\text{вых}} = U_{\text{оп}} \cdot \left(1 + \frac{R3}{R4}\right) B,$$

где U_{on} = 1,3 B или $\frac{\text{1,3 B} \cdot \text{R6}}{\text{R5} + \text{R6}}$ B, в случае включения делителя опорного напряжения.

D – микросхема;

С1, С2 – конденсаторы;

R1, R2, R3, R4, R5, R6 – резисторы;

SA - механический или электронный ключ.

Требования к элементам схемы

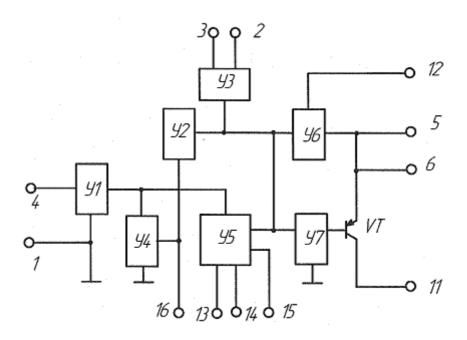
С1 > 0,01 мкФ устанавливается при необходимости для повышения устойчивости.

 $C2 \ge 2.2$ мкФ (Та) или 4,7 мкФ (Al) – выходной конденсатор.

$$R1 = \frac{\left(150 - 210\right) \text{ мB}}{I_{\text{огр}} \, \text{мA}} \, \text{Ом} - \text{токоизмерительный резистор узла защиты по току}.$$

R2 = (0-510) Ом – резистор регулировки порога срабатывания токовой защиты.

 $R3 = (0,1-22) \cdot кOм - резистор задания выходного напряжения.$


R4 ≤ 1,3 кОм – резистор задания тока делителя напряжения считывания обратной связи.

 $(R5+R6) \ge 30 \ \kappa O_M$ — резисторы делителя опорного напряжения, устанавливаемые вместо перемычки между выводами 13 и 16 при необходимости стабилизации напряжений в диапазоне (0,7-1,3) В.

SA – механический или электронный ключ, в замкнутом состоянии выключающий микросхему.

Структурная схема

У1 – стабилизатор напряжения

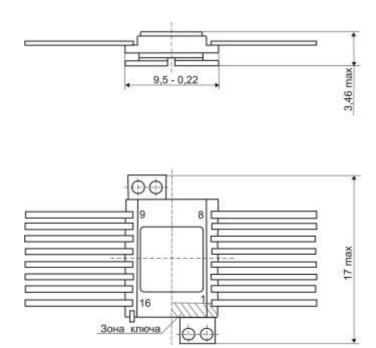
У2 – узел тепловой защиты

У3 – узел токовой защиты

У4 – источник опорного напряжения

У5 – усилитель рассогласования

У6 – узел защиты по напряжению


У7 – драйвер

VT – выходной транзистор

Контакт	Цепь
1	Общий
2	Токовая защита «-»
3	Токовая защита «+»
4	Питание
5	Вход (Эмиттер)
6	Вход (Эмиттер)
7	Свободный
8	Свободный
9	Свободный
10	Свободный
11	Выход (Коллектор)
12	Защита по напряжению
13	Вход усилителя «+»
14	Вход усилителя «-»
15	Коррекция
16	Опорное напряжение

Габаритный чертеж

Масса не более 1,4 г.