МИКРОСХЕМА ИНТЕГРАЛЬНАЯ К5537BB015

Руководство пользователя

Содержание

Введение	3
1 Назначение и основные технические характеристики микросхемы	
K5537BB015	4
1.1 Архитектурные характеристики микросхем	4
1.2 Основные параметры микросхем	4
1.3 Конструктивные характеристики микросхем	5
1.4 Функциональное назначение выводов микросхемы	6
1.5 Электрические характеристики микросхем	6
2 Общая характеристика микросхем	9
3 Описание устройства	10
3.1 Структура и особенности микросхемы	. 10
3.2 Выводы питания	. 10
3.3 Источник опорного напряжения	. 11
3.4 Таблица функционирования микросхемы	. 11
Заключение	. 12
Лист регистрации изменений	. 13

Введение

Основное назначение ИС К5537ВВ015 — передача информации дифференциальными сигналами малых напряжений по двум проводникам печатной платы или по согласованному дифференциальному кабелю, при которой обеспечивается снижение чувствительности к искажениям сигнала от внешних электромагнитных воздействий.

LVDS-передатчики широко используются в информационных панелях, шинах дисплеев, шинах соединений процессоров, шинах мультимедиа периферии, при передаче больших объемов данных на расстояние порядка нескольких метров.

ИС К5537ВВ015 служит основой для разработки и производства широкой номенклатуры изделий электронной техники, предназначенных для применения в составе законченных систем сбора и передачи информации.

Разработанная микросхема позволит уменьшить вес аппаратуры, обеспечить требуемые показатели по надежности и сроку службы, а также исключить применение аналогичных импортных ИС в средствах ВВТ.

1 Назначение и основные технические характеристики микросхемы К5537BB015

Микросхема К5537ВВ015 — это четыре передатчика низковольтных дифференциальных сигналов, предназначенных для преобразования цифрового сигнала в уровни стандарта дифференциального сигнала для уменьшения мощности и увеличения скорости передачи.

Низкая мощность рассеивания (25 мВт на канал при частоте 200 МГц) позволяет использовать микросхему для портативных маломощных применений.

1.1 Архитектурные характеристики микросхем

Микросхема К5537ВВ015 содержит четыре независимых передатчика, имеет собственный (внутренний) источник опорного напряжения.

1.2 Основные параметры микросхем

Основные параметры микросхемы К5537ВВ015:

- скорость передачи данных до 400 Мб/с;
- низковольтный дифференциальный сигнал с типовым выходным напряжением 350 мВ и нагрузкой 100 Ом;
 - типовое время нарастания сигнала 500 пс;
 - типовая задержка 1,7 нс;
 - работа от одного источника питания 3,3 В;
 - мощность рассеивания 25 мВт на канал при частоте 200 МГц;
 - цифровые входы совместимы с низковольтным ТТЛ;
 - количество выводов: 16.

1.3 Конструктивные характеристики микросхем

Микросхема выполнена в 16-выводном металлокерамическом корпусе 5130.16-АНЗ. Масса микросхемы – не более 1,5 г.

Условное графическое обозначение микросхемы приведено на рисунке 1.

Функциональное назначение выводов приведено в таблице 1.

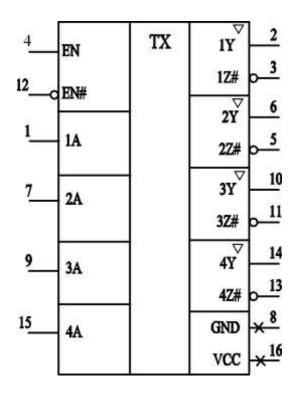


Рисунок 1 – Условное графическое обозначение ИС К5537ВВ015

1.4 Функциональное назначение выводов микросхемы

В таблице 1 приведено функциональное назначение выводов микросхемы K5537BB015.

Таблица 1 – Функциональное назначение выводов микросхемы

Номер	Обозначение	Тип	Функциональное назначение вывода
вывода	вывода	вывода	
4	EN	I	Прямой вход сигнала разрешения
12	EN#	I	Инверсный вход сигнала разрешения
1	1A	I	Вход первого канала
7	2A	I	Вход второго канала
9	3A	I	Вход третьего канала
15	4A	I	Вход четвертого канала
2	1Y	O/Z	Прямой выход 1 канала
3	1Z#	O/Z	Инверсный выход 1 канала
6	2Y	O/Z	Прямой выход 2 канала
5	2Z#	O/Z	Инверсный выход 2 канала
10	3Y	O/Z	Прямой выход 3 канала
11	3Z#	O/Z	Инверсный выход 3 канала
14	4Y	O/Z	Прямой выход 4 канала
13	4Z#	O/Z	Инверсный выход 4 канала
8	GND	-	Общий вывод
16	VCC	-	Вывод питания

 Примечание — В графе «Тип вывода» условно обозначены: І — вход, О — выход, Z — третье состояние.

1.5 Электрические характеристики микросхем

Электрические характеристики микросхемы К5537ВВ015 при приемке и поставке приведены в таблице 2.

Значения предельно допустимых электрических режимов эксплуатации в диапазоне рабочих температур приведены в таблице 3.

Таблица 2 – Электрические параметры микросхемы K5537BB015 при приемке и поставке

Наименование	Буквенное	Норма п	араметра	Темпера-	
	параметра, единица режим измерения)	обозначение	не менее	не	тура
T	параметра		более	среды, °С	
	1	2	3	4	5
1 Амплитуда диф		***	170	7 00	
выходного напрях		U_{OD}	170	500	
$(U_{CC} = (3,0; 3,6) B$					
2 Изменение ампл	-				
дифференциально		ATT			
напряжения межд	у логическими	ΔU_{OD}	50	50	
состояниями, мВ	D 100 O)		-50	50	
$(U_{CC} = (3,0; 3,6) B$					
_	одное напряжение в	TT			
установившемся р		$U_{OC(SS)}$	1,125	1,375	
$(U_{CC} = (3,0; 3,6) B$					
	разного выходного				
1	ановившемся режиме	$\Delta U_{OC(SS)}$			
•	ми состояниями, мВ	OC(BB)	~ 0	7 0	
$(U_{CC} = (3,0; 3,6) B$			-50	50	
_	ходное напряжение от				
пика до пика, мВ,		$U_{OC(PP)}$	_	150	60 . 3
$U_{CC} = (3,0; 3,6) B$					-60 ± 3
6 Ток	$U_{I(A)} = (0.8; 2) B,$				25 ± 10
потребления, мА	состояние	I_{CC}	_	20	125 ± 5
$(U_{CC} = 3.6 B)$	«Включено», без				
	нагрузки				
	$U_{I(A)} = (0.8; 2) B,$				
	состояние	I_{CCR}	_	35	
	«Включено»,	CCR			
	$R_{L} = 100 \text{ Om}$				
	$U_{I(A)} = (0; U_{CC}) B,$	T		1	
	состояние	I_{CCZ}	_	1	
«Выключено»					
7 Входной ток высокого уровня, мкА		$ m I_{IH}$			
$(U_{CC} = 3.6 \text{ B}, U_{I(A)} = 2 \text{ B})$		*IH	_	20	
8 Входной ток низ	8 Входной ток низкого уровня, мкА		_	10	
$(U_{CC} = 3.6 \text{ B}, U_{I(A)})$	I_{IL}				
9 Выхолной ток				24	
короткого	$U_O = 0 B$	floor	_	-24	
замыкания, мА	амыкания мА		10	10	
$(U_{CC} = 3,6 B)$	$U_{OD} = 0 B$		-12	12	

Продолжение таблицы 2

,	T	T		
1	2	3	4	5
10 Выходной ток высокого уровня в состоянии «Выключено», мкА $(U_{CC}=3.6~B,U_{O}=2.4~B)$	I _{OZH}	-1	1	
11 Выходной ток низкого уровня в состоянии «Выключено», мкА $(U_{CC}=3.6~B,U_{O}=0~B)$	I _{OZL}	-1	1	
12 Выходной ток при отключенном питании, мкА $(U_{CC} = 0 \text{ B}, U_{O} = 2,4 \text{ B})$	$I_{O(OFF)}$	-1	1	
13 Время задержки распространения при выключении, нс $(U_{CC}=3.0 \text{ B, } R_L=100 \text{ Om,} \\ C_L=10 \text{ Π}\Phi)$	t _{PLH}	0,5	2	
14 Время задержки распространения при включении, нс $(U_{CC}=3,0 \text{ B, } R_L=100 \text{ Om,} \\ C_L=10 \text{ Π}\Phi)$	$t_{ m PHL}$	0,8	2,5	
15 Разность задержек в одном канале, нс $(U_{CC} = 3.0 \text{ B, } R_L = 100 \text{ Om,}$ $C_L = 10 \text{ Π}\Phi)$	$t_{sk(p)}$	-	0,6	-60 ± 3 25 ± 10
16 Разность задержек между каналами, не $(U_{CC}=3.0 \; B, \; R_L=100 \; Om, \\ C_L=10 \; \pi\Phi)$	t _{sk(o)}	-	0,3	125 ± 5
17 Время задержки распространения при переходе из состояния «Выключено» в состояние высокого уровня, нс $(U_{CC}=3.0~B,C_L=10~\pi\Phi)$	t _{PZH}	_	15	
18 Время задержки распространения при переходе из состояния «Выключено» в состояние низкого уровня, нс $(U_{CC}=3.0~B,C_L=10~\pi\Phi)$	t _{PZL}	_	15	
19 Время задержки распространения при переходе из состояния высокого уровня в состояние «Выключено», нс $(U_{CC}=3.0~B,C_L=10~\pi\Phi)$	$t_{ m PHZ}$	_	15	

Окончание таблицы 2

1	2	3	4	5
20 Время задержки распространения при переходе из состояния низкого	t			
уровня в состояние «Выключено», нс $(U_{CC} = 3.0 \text{ B}, C_L = 10 \text{ п}\Phi)$	t_{PLZ}	_	15	
21 Время нарастания дифференциального выходного сигнала (от уровня $0,2$ к уровню $0,8$), нс $(U_{CC}=3,0$ В, $R_L=100$ Ом, $C_L=10$ пФ)	t _r	0,33	1,0	-60 ± 3 25 ± 10 125 ± 5
22 Время спада дифференциального выходного сигнала (от уровня 0,8 к уровню 0,2), нс $(U_{CC}=3,0\ B,\ R_L=100\ Om,$ $C_L=10\ \Pi\Phi)$	\mathbf{t}_{f}	0,27	1,0	

Примечание — Параметры I_{IL} , I_{IH} , I_{OZL} , I_{OZH} при температуре минус $60^{\circ}\mathrm{C}$ не измеряются, а гарантируются нормами при температуре (25 ± 10) °C.

Таблица 3 – Значения предельно допустимых режимов эксплуатации микросхем K5537BB015 в диапазоне рабочих температур

Наименование параметра режима,	Буквенное	Норма параметра		
единица измерения	обозначение параметра	не менее	не более	
1 Напряжение питания, В	U_{CC}	3,0	3,6	
2 Входное напряжение высокого	U_{IH}			
уровня, В		2	U_{CC}	
3 Входное напряжение низкого	$ m U_{IL}$			
уровня, В		0	0,8	
4 Емкость нагрузки, пФ	C_{L}	_	10	

2 Общая характеристика микросхем

Микросхема K5537BB015 — четырехканальный высокоскоростной передатчик, предназначенный для использования в помехоусточивых межблочных линях связи промышленных систем. Основные характеристики микросхемы изложены в стандарте интерфейса ANSI/TIA/EIA-644.

3 Описание устройства

3.1 Структура и особенности микросхемы

Особенности микросхемы К5537ВВ015:

- четыре низковольтных дифференциальных передатчика;
- амплитуда выходного дифференциального сигнала 350 мВ с нагрузкой 100 Ом;
 - один источник питания напряжением от 3,0 до 3,6 В;
 - встроенный источник опорного напряжения.

Структурная схема микросхемы приведена на рисунке 2.

Микросхема содержит следующие функциональные блоки:

- источник опорного напряжения (ИОН);
- четыре дифференциальных передатчика;
- логика разрешения выхода.

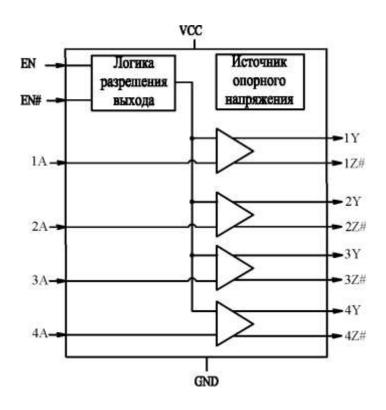


Рисунок 2 – Структурная схема ИС К5537ВВ015

3.2 Выводы питания

Микросхема имеет выводы питания VCC и GND. Напряжение питания может находиться в диапазоне от 3,0 до 3,6 В.

3.3 Источник опорного напряжения

Источник опорного напряжения выполнен с использованием напряжения запрещенной зоны полупроводника.

3.4 Таблица функционирования микросхемы

Микросхемы работают в соответствии с данными, приведенными в таблице 4.

Таблица 4 – Функционирование микросхемы

Вход	Разрешен	ие выхода	Вых	ОДЫ
A	EN	EN#	Y	Z#
Н	Н	X	Н	L
L	Н	X	L	Н
Н	X	L	Н	L
L	X	L	L	Н
X	L	Н	Z	Z
-	Н	X	L	Н
-	X	L	L	Н

Примечание – Обозначения, применяемые в таблице:

«Н» – высокий уровень,

«L» – низкий уровень,

«Х» – безразличное состояние,

«Z» – третье состояние (высокое сопротивление),

«-» – не подключенные входы (обрыв).

Заключение

В настоящем руководстве КФДЛ.431323.010 рассмотрены архитектура, функциональное построение и особенности применения микросхемы К5537ВВ015, которая представляет собой микросхему низковольтного дифференциального передатчика.

Все значения электрических параметров микросхемы приведены в технических условиях на изделие АДКБ.431230.276.

Значения параметров, приведенные в настоящем руководстве, являются справочными.

Данное руководство может служить практическим пособием по применению LVDS-передатчиков для разработчиков систем на основе микросхем К5537BB015.

Применение разработанных микросхем в системах цифровой обработки сигналов, встроенных системах управления, связи, в системах автоматизации технологических процессов, вычислительной технике, телекоммуникации-онной технике и т. д. позволит создавать более совершенные в техническом отношении и надежные в эксплуатации изделия.

Лист регистрации изменений

	Ном	ера лис	гов (стра		трации изг			
Изм.	изме- ненных	заме- нен- ных	новых	анну- лиро- ванных	Всего листов (страниц) в докум.	№ докум.	Подп.	Дата
-	-	-	все	-	13			04.08.15
1	1	-	-	-	-			05.08.15