ОАО «ОКБ «Экситон»

142500 г. Павловский Посад Московской обл., ул. Интернациональная, д.34а

Тел. 8-(49643)-2-31-07, 8-(49643)-7-04-07

www.okbexiton.ru E-mail: okbexiton@mail.ru

564TM2B, H564TM2B, OCM564TM2B.

Функциональный аналог CD4013A.

Два триггера D - типа.

Технология – КМОП.

Технические условия исполнения бК0.347.064 ТУ1/02.

Предназначены для применения в радиоэлектронной аппаратуре специального назначения.

Краткие основные характеристики:

Диапазон напряжений питания от 4,2 В до 15 В.

Предельное напряжение питания до 18В.

Номинальный диапазон рабочих температур от -60 °C до +125 °C.

Время задержки распространения сигнала при включении и выключении \leq 420 нс при $U_{CC} = 5,0$ В, $C_L = 50$ пФ, T = 25 °C.

Выходное напряжение низкого уровня \leq 0,01 В при $U_{CC} = 5$,0 В, T=25 °C.

Выходное напряжение высокого уровня \geq 4,99 В при $U_{CC} = 5,0$ В, T=25 °C.

Выходной ток низкого уровня ≥1.0мА при U_{CC} =10 B, U_{O} =0.5 B, T=25 °C.

Выходной ток высокого уровня \geq /-1.0/мА при U_{CC} =10 B, U_{O} =9.5 B, T=25 °C.

Показатели стойкости к воздействию спецфакторов:

И1, И2, И3, С1 по 2У; С3, К3 по 1У; И4 - 1,5ед.; К1 по 1У.

Рис. 1. Условное графическое обозначение микросхем 564TM2B, H564TM2B, OCM564TM2B.

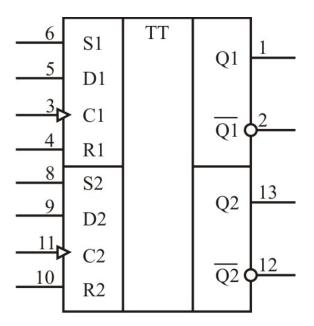


Табл. 1. Таблица истинности микросхем 564TM2B, H564TM2B, OCM564TM2B для одного триггера.

No	Обозначе-	**
вывода	ние вывода	Назначение вывода
1	Q1	Выход
2	$\overline{Q1}$	Выход
3	C1	Вход
4	R1	Вход
5	D1	Вход
6	S1	Вход
7	0V	Общий
8	S2	Вход
9	D2	Вход
10	R2	Вход
11	C2	Вход
12	$\overline{\mathrm{Q2}}$	Выход
13	Q2	Выход
14	V_{CC}	Питание

Табл. 2. Таблица истинности микросхем 564TM2B, H564TM2B, OCM564TM2B.

C	D	R	S	Q	Q
↑	L	L	L	L	Н
↑	Н	L	L	Н	L
\downarrow	X	L	L	Q	Q
X	X	Н	L	L	Н
X	X	L	Н	Н	L
X	X	Н	Н	Н	Н

L - Низкий уровень,

Н - Высокий уровень,

Х - Любое состояние,

↑ - Переход с низкого уровня в высокий,

↓ - Переход с высокого уровня в низкий.

Табл. 3. Электрические параметры микросхем 564ТМ2В, Н564ТМ2В, ОСМ564ТМ2В

при приемке и поставке.

Наименование параметра,	Буквенное	Норма параметра		Темпера-
единица измерения, режим измерения	обозначение параметра	не менее	не более	тура среды,°С
1. Выходное напряжение низкого уровня, B, при: $U_{CC} = 5 \text{ B}; 10 \text{ B}$	$\rm U_{OL}$	-	0,01	25±10 -60
		_	0,05	125
2. Выходное напряжение высокого уровня, B, при: $U_{CC} = 5 \text{ B}$	$\rm U_{OH}$	4,99	-	25±10 -60
		4,95	-	125
$U_{CC} = 10 B$		9,99	-	25±10 -60
		9,95	-	125
3 . Максимальное выходное напряжение низкого уровня, B, при: $U_{CC} = 5$ B; $U_{IH} = 3.5$ B; $U_{IL} = 1.5$ B $U_{CC} = 5$ B; $U_{IH} = 3.6$ B; $U_{IL} = 1.5$ B $U_{CC} = 5$ B; $U_{IH} = 3.5$ B; $U_{IL} = 1.4$ B	U _{OL max}	-	0,8	25±10 -60 125
$U_{CC} = 10 \text{ B}; \ U_{IH} = 7.0 \text{ B}; \ U_{IL} = 3.0 \text{ B}$ $U_{CC} = 10 \text{ B}; \ U_{IH} = 7.1 \text{ B}; \ U_{IL} = 3.0 \text{ B}$ $U_{CC} = 10 \text{ B}; \ U_{IH} = 7.0 \text{ B}; \ U_{IL} = 2.9$		-	1,0	25±10 -60 125
4. Минимальное выходное напряжение высокого уровня, B, при: $U_{CC}=5$ B; $U_{IH}=3,5$ B; $U_{IL}=1,5$ B $U_{CC}=5$ B; $U_{IH}=3,6$ B; $U_{IL}=1,5$ B $U_{CC}=5$ B; $U_{IH}=3,5$ B; $U_{IL}=1,4$ B	$ m U_{OHmin}$	4,2	-	25±10 -60 125
$U_{CC} = 10 \text{ B}; \ U_{IH} = 7.0 \text{ B}; \ U_{IL} = 3.0 \text{ B}$ $U_{CC} = 10 \text{ B}; \ U_{IH} = 7.1 \text{ B}; \ U_{IL} = 3.0 \text{ B}$ $U_{CC} = 10 \text{ B}; \ U_{IH} = 7.0 \text{ B}; \ U_{IL} = 2.9$		9,0	-	25±10 -60 125
$5.~$ Входной ток низкого уровня, мк $A,~$ при: $U_{CC}=15~$ В	$I_{\rm IL}$	-	/ - 0,1 /	25±10 -60
		-	/ -1,0 /	125
6. Входной ток высокого уровня, мкA, при: $U_{CC} = 15 \text{ B}$	I_{IH}	-	0,1	25±10 -60
		-	1,0	125
7. Выходной ток низкого уровня, мА, при: $U_{CC} = 5~B;~U_{O} = 0.5~B$	I_{OL}	0,5 0,6 0,3	- - -	25±10 -60 125
$U_{CC} = 10 \text{ B}; \ U_{O} = 0.5 \text{ B}$		1,0 1,2 0,7	- - -	25±10 -60 125

Продолжение табл. 3

		продолжение таол. 3		
Наименование параметра,	Буквенное	Норма параметра		Темпера-
единица измерения,	обозначение			тура
режим измерения	параметра	не менее	не более	среды,°С
8. Выходной ток высокого уровня, мА, при:		/ - 0,5 /	-	25±10
$U_{CC} = 5 B; \ U_{O} = 4,5 B$	I_{OH}	/ - 0,6 /	-	-60
		/ - 0,3 /	-	125
		/ - 1,0 /	-	25±10
$U_{CC} = 10 \text{ B}; \ U_O = 9.5 \text{ B}$		/ - 1,2 /	-	-60
		/ - 0,7 /	-	125
9. Ток потребления, мкА, при:		-	1,0	25±10
$U_{CC} = 5 B$	I_{CC}	-	1,0	-60
		-	30,0	125
		-	2,0	25±10
$U_{CC} = 10, B$		-	2,0	-60
		-	60,0	125
		-	4,0	25±10
$U_{CC} = 15 B$		-	4,0	-60
		-	120,0	125
10. Ток потребления в динамическом режиме, мА,	I_{OCC}			
при: $U_{CC} = 10 B$; $U_{IH} = 10 B$; $U_{IL} = 0 B$;		-	0,17	25±10
$f = 100$ к Γ ц; $C_L = 50 \ п\Phi$				
11. Время задержки распространения при		-	420	25±10
включении, нс, при:	$t_{ m PHL}$	-	420	-60
$U_{CC} = 5 B, C_L = 50 п\Phi$		-	590	125
		-	150	25±10
$U_{CC}=10 B, C_L=50 п \Phi$		-	150	-60
		-	210	125
12. Время задержки распространения при		-	420	25±10
выключении, нс, при:	$t_{\rm PLH}$	-	420	-60
U_{CC} =5 В, C_L =50 пФ		_	590	125
]	-	150	25±10
U_{CC} =10 В, C_L =50 пФ		-	150	-60
		-	210	125
13. Входная емкость, пФ, при:				
$U_{CC} = 10 \text{ B}$	C_{I}	-	7,5	25±10

Обозначение микросхем при заказе (в договоре на поставку)

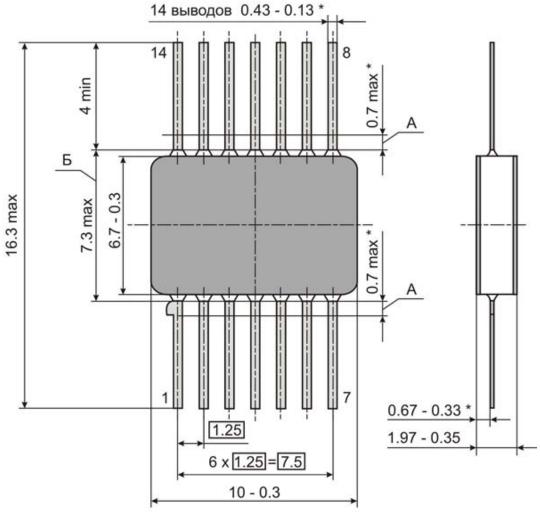
564TM2B, H564TM2B, OCM564TM2B 6K0.347.064 TY1/02.

При заказе микросхем, предназначенных для автоматической сборки (монтажа) аппаратуры, после обозначения ТУ ставят букву «А»:

564TM2B, H564TM2B, OCM564TM2B 6К0.347.064 ТУ1/02 «А».

Обозначение микросхем при заказе в бескорпусном исполнении на общей пластине:

Б564ТМ2В - 4 6К0.347.064 ТУ1/02.


Чертеж кристалла СЛКН.757644.008.

Варианты конструктивного исполнения для поставок заказчику:

- в корпусе типа 401.14-5 с никелевым покрытием;
- в корпусе типа 401.14-5, Н02.14-1 с золотым покрытием;
- кристаллы без корпуса и без выводов.

Возможно иное исполнение по требованиям Заказчика.

Корпус 401.14-5 размеры в миллиметрах

- А длина вывода, в пределах которой производится контроль смещения плоскостей симметрии выводов от номинального расположения.
- Б ширина зоны, которая включает действительную ширину микросхемы и часть выводов, непригодную для монтажа.

Для более полной информации о микросхеме использовать бK0.347.064 ТУ/02 и бK0.347.064 ТУ1/02, СЛКН.431253.001Э3, СЛКН.431253.001ТБ1.